

Considerations air pollution policy

Ranking PM sources on multiple health effects and effect parameters needs to be done
in a standardized way to improve comparison for evaluation purposes

• At least evaluation of the health effects of transport emissions (exhaust and non-exhaust) should be considered before introducing new fuels or technologies

 But source-specific risk is a combination of hazard and exposure and only then could support source specific policy to improve public health

- What metric for regulation (mass, number concentration, surface area ..)
 - PM mass dominated by larger particles, particle number by smaller particles
- Which components and sources are important, better whole mixture approach but how
- And what if reduction of emission will result in increase toxicity

EXPOSURE

type/severity

HAZARD

PM size

Exposure to particulate matter and oxidative potential sources in Europe

Alexey Klimenko

1. The methodology

$$\sum_{i=1}^{n} CO_{add} = \sum_{i=1}^{n} m(i) \times R_{t}(i)$$

Table 1 – Relative to carbon monoxide (CO) toxicity ratios (R_{\downarrow}) of 64 significant pollutants

Pollutant	R,	
Group I (the bulk of the		
exhaust emissions):		
СО	1	
CO,	0,0022	
NO _x	75	
N ₂ Ô	188	
\overline{NH}_3	75	
LHČ	3,16	
Group II (<u>A</u> ldehydes):		
formaldehyde	1000	
acetaldahyde	300	
acrolein	100	
benzaldehyde	50	
crotonaldehyde	5	
methacrolein	5	
butyraldehyde	5	
isobutanaldehyde	5	
propionaldehyde	5	
hexanal	5	
i-valeraldehyde	5	
valeraldehyde	5 5 5 5 5 5 5	
o-tolualdehyde	5	
m-tolualdehyde	5	
p-tolualdehyde	5	

Group III (<u>K</u> etones):			
cetone	8,57		
nethylethlketone	5		
Group IV (Aromatics):			
oluene	5		
thylbenzene	150		
n,p-xylene	15		
p-xylene	15		
.,2,3 trimethylbenzene	100		
.,2,4 trimethylbenzene	200		
.,3,5 trimethylbenzene	300		
tyrene	1500		
penzene	30		
29	5		
210	10		
>13	20		
Group V (PAHs & POPs):			
D(1,2,3,cd)P (indeno(1,2,3-cd)pyrene)	1500000		
3(k)F (benzo(k)fluoranthene)	3000000		
B(b)F (benzo(b)fluoranthene)	3000000		
B(a)P (benzo(a)pyrene)	3000000		

R,		
Group VI (particulate		
41,5		
300		
200		
100		
150		
50		
Group VII (sulfur		
compounds):		
30		
22		

Pollutant	R,		
Group VIII (metals and its			
compounds (MS)):			
Pb	400		
Cd	2000		
Cu	40		
Cr	1000		
Ni	4000		
Se	200		
Zn	40		
Hg	4000		
As	2000		
Fe	75		
Mg2+	60		
Mo	150		
Sb	150		
Si	60		
Sn	150		
Ti	20		
C ₈ H ₂₀ Pb	224000		

4. Some results (3): ICE and Elecric powered Vehicles comparison in view of aggregated toxicity

Petrol-powered (PC(P)), diesel-powered (PC(D)), and LPG-powered (PC(LPG)) passenger cars, as well as modern (EV) and future EV(R) electrical vehicles

Petrol-powered mopeds and motorcycles of different range of four-stroke engine volume (cub/cm) and two-stroke (L(2s)) engines

Transport derived Ultrafines and the Brain Effects (TUBE)

- Epidemiological studies link pollutant exposure to dementia
 - Risk of dementia is increased the closer people live to major roadways
 - Brain atrophy in MRI scans of people exposed to high PM levels
 - Epidemiological studies report that risk of Alzheimer's disease is increased with exposure to higher levels of PM
 - Increased Alzheimer pathology in brains of individuals living in highly polluted areas
- Main focus on effects of UFPs from road traffic to brain health, including disease mechanisms, translocation and clearance
- Respiratory toxicology and genotoxicity with online exposure systems
- Engine exhaust from cars, trucks/buses, marine engines
- Combining toxicological research in cells, mice and human to provide better tools for risk assessment
- Epidemiological data combined with biomarkers

P12, UEM, Czech Republi

P11, TUT, Finland

P08, UCPH, Denmark

P03, UU, Netherlands

P14, VP, Netherlands

P07, USOTON, United Kingdom